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ABSTRACT

For univariate random sequences, the power spectral density acts like a proba-

bility density function of the frequencies present in the sequence. This dissertation

extends that concept to bivariate random sequences. For this purpose, a function

called the joint spectral density is defined that represents a joint probability weight-

ing of the frequency content of pairs of random sequences. Given a pair of random

sequences, the joint spectral density is not uniquely determined in the absence of any

constraints. Two approaches to constraining the sequences are suggested: (1) assume

the sequences are the margins of some stationary random field, (2) assume the se-

quences conform to a particular model that is linked to the joint spectral density. For

both approaches, the properties of the resulting sequences are investigated in some

detail, and simulation is used to corroborate theoretical results. It is concluded that

under either of these two constraints, the joint spectral density can be computed from

the non-stationary cross-correlation.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The power spectral density (PSD) of a random sequencecan be loosely inter-

preted as a probability density function (PDF) of the frequencycontent of that se-

quence. Stated moreprecisely,if the PSD of a random sequencex(t) is denoted by

f(A), then f(A) dA represents the expected value of the portion of the total power in

x(t) due to components with frequency in the interval (_, _ + d$] [1]. Normalizing

f(A) by the total power gives a probability weighting for each frequency analogous

to a PDF of the frequency. As such, the power spectral density has all the properties

of a probability density function. This is one of many parallels between the spectral

theory of random sequences and the probability theory of random variables. The inte-

gral of the PSD, sometimes called the integrated spectrum or the'spectral distribution

function, is analogous to a probability (cumulative) distribution function. Also, in

the time domain, the auto-covariance is closely related to the class of characteristic

functions. Much of the terminology echoes the similarity between concepts in these

two bodies of theory. In this context it makes sense to talk about the statistics of the

spectrum where frequency is treated as a random variable. For example, computing

the spectral moments is often of considerable interest in applications such as radar

signal processing [2]. Covariance based approaches to estimating the spectral mean

and width can be understood in terms of the moment theorem from probability the-

ory applied to covariances and spectral densities instead of characteristic functions

and probability densities [3].

This one-to-one correspondence begins to break down when the joint statisti_s

of more than one random sequence are under consideration. Consider the bivariate

case of two random sequences. What we would like to have is a single function _Jf



two frequency arguments that acts like a joint probability density function for the

frequency content in the two sequences. Conventional spectral analysis of bivariate

random sequences involves four functions of a single frequency argument that are

typically written as a two-by-two matrix valued function called the spectral density

matrix. The PSDs of the two sequences, sometimes called their auto-spectra, are

placed along the main diagonal and their cross-spectra are placed along the cross di-

agonal. In essence, the auto-spectra correspond to the marginal probability densities

of the frequency content for each sequence, and the cross-spectra contribute infor-

mation about the relationships between the two sequences. It is well known from

probability theory that the joint probability density function cannot be uniquely de-

termined based on knowledge of the marginals [4]. Thus the ability to form this

desired function via conventional bivariate analysis depends on whether the cross-

spectra contain the extra information that is necessary to uniquely determine the

joint probability density function.

This function that acts like a joint probability density function of the frequency

content in the two sequences will be called the joint spectral density (JSD). The

terminology, joint spectral density, requires some clarification because the individual

words (joint, spectral, and density) are rather generic and have been used in various

combinations to denote things that are not intended here. To help reduce the risk

of confusion, first consider what is NOT meant by the joint spectral density as the

term is defined in this dissertation. It is not the spectral density matrix of a bivariate

random function. It is not the coherency, or the magnitude squared coherency. It is

not the bispectrum or any other higher-order spectrum. What is meant by the joint

spectral density is a joint probability weighting of the frequency content in a set of

two or more random sequences that is completely analogous to a joint probability

density function.



Why bother about this joint spectral density function when there exists a well

developed theory for multivariate random functions based on the covaxiance matrix

in the time domain and the spectral density matrix in the frequency domain? The

short answer to this question is that having the joint spectral density will make all

the techniques for manipulating PDFs available to the spectral analysis of bivariate

random sequences. In particular, random variable transformations, or the so-called

algebra of random variables, are useful because they can be used to determine PDFs

of functions of the frequency in two random sequences. If x and y are any two random

variables, which may represent the frequency content in two random sequences, and

g(., .) is a function, then the random variable

h = g(z,y),

can be expressed in terms of g(., .) and the joint probability density function of x and

y N.

The focus of this dissertation is to form a precise definition of the joint spectral

density function in terms of the spectral representation of random sequences, explore

its properties, and determine under what conditions (if any) it can be estimated from

realizations of a bivariate random sequence.

1.2 The Radar Problem

An application where the joint spectral density could be used to great advan-

tage is in the processing of radar backscatter return from distributed targets such as

weather. A pulsed Doppler weather radar can be used to construct a map of the radial

windspeed I over a scanned air volume (see Figure 1.1) [2]. Each of the boxed regions

in Figure 1.1 represent a range cell volume from which samples of the backscatter re-

turn are collected over time (see Figure 1.2) These samples form a random sequence

tThe component of the vector wind on a radial from the radar platform will be referred to a.s
the radial windspeed.
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in which the frequency content is related via the Doppler shift to the velocities of

wind-blown particles within the range cell volume.

An important part of the signal processing task involves estimating the zeroth,

first, and second moments of the Doppler spectrum in each range cell [5]. These three

moments of the Doppler spectrum correspond to the signal power, mean velocity, and

spectrum width respectively. When the goal of signal processing is the detection of

certain types of weather events (e.g., gust fronts, tornadoes, windshears), the radial

windspeed gradient, av_, is often of particular interest. Knowledge of the joint spectral

density of two adjacent range cells would make it possible to compute a probability

density of windspeed gradient at each range increment through the use of random

variable transformations.

An example of a function of the windspeed gradient that is of interest in the

windshear detection problem, is a hazard index called the "F'-factor given by

_'a--'_ 1 + V--_=J '

where Vg is the aircraft groundspeed, V= is the aircraft airspeed, h is the altitude.

and g is the acceleration due to gravity [6]. The radial windspeed gradient can be

estimated by

oqv 1

= -

where vl and v2 are the windspeeds in two range cells and Ar is the distance between

them. If the joint probability density of vl and v_ is known, then it is a simple matter

to derive a probability density of hazard factor as the density of the difference of t _o

random variables scaled by a constant [4]. The JSD provides a way to get that j(,,::l

probability density of the windspeeds in two range cells.

1.3 A Note on Terminology

Much of the terminology associated with the spectral analysis of random -.-

quences is used inconsistently in the various texts and papers available on the -.,

¢)5 : :"
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ject. In this section,ground rules are establishedfor how variousterms are usedin

this dissertation. First, there is no consistentway of distinguishing betweenrandom

functions of a continuous parameter (sometimestime, but not restricted to be so)

and random functions of a discrete parameter. In this regard, a conventionfollow-

ing that of Yaglomis usedso that random functions of a continuous parameterare

calledrandom processesand random functions of a discreteparameterarecalled ran-

dom sequences[7]. When the argument may be either continuousor discrete it is

called a random function. Throughout most of what follows, random sequencesare

treated exclusively,however,in most casesthe resultsare equally applicable to ran-

dom processeswith only minor adjustments (usually involving a changeof the limits

of integration from (-_', _'] to (-c_, cx_]).

When more that onerandom function is observed,they axecollectively referred

to asa multivariate random function. Singlerandom functions of more than one ar-

gument aresometimescalled multidimensional randomfunctions, but here the term

random field is preferred. The term random field makesno distinction betweencon-

tinuous and discrete arguments, but unlessotherwise specified, the arguments are

assumedto be discrete.

The exact meaning of margin as it is used in this dissertation dependson the

type of function to which it is applied. For random fields and their correlation func-

tions, the margin refers to the function that results from setting one or more of the

argumentsequal to zero. The margins of spectral distribution functions result from

setting one or more of the argumentsequal to • (or 2c in the continuous case). Fi

nally, for spectral density functions the margin is formed by integrating out one ,,r

more of the arguments.

1.4 Contribution to the Field

The contributions of this dissertation are twofold. First, a definition of the j,,irl',

spectral density is given in terms of the spectral representation of random fiol,_-

ORiGI_,b_oL :-,._.=_, !_'
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setting the problem on firm mathematical ground. According to this definition, the

joint spectral density is not uniquely determined by the two sequences. Second, two

classes of sequences are identified that enable the joint spectral density to be uniquely

determined. The class of marginal sequences is considered first. Several theorems are

offered on the properties of marginal sequences, and examples axe provided to illus-

trate those properties. The second class of sequences is based on an exponential model

that explicitly incorporates the joint spectral density in its definition. Simulations

are used in both cases to corroborate the theory.

1.5 Organization

In the second chapter, the spectral and correlation theory of univariate random

sequences is reviewed to establish basic concepts that axe extended to bivaxiate ran-

dom sequences and random fields in Chapter 3. Also in Chapter 3 a definition for

the joint power spectral density is proposed based on establishing a connection be-

tween the spectral representation of a bivariate random sequence and the spectral

representation of a random field. In Chapter 4 this connection is made by assuming a

particular relationship between the bivaxiate random sequence and a stationary ran-

dom field. Another approach to constraining the problem is explored in Chapter 5

where the bivaxiate random sequence is assumed to conform to a special model that

allows the joint power spectral density to be computed under some special circum

stances. Finally, in Chapter 6 some conclusions are drawn from this research and

suggestions axe made for future work.



--m

CHAPTER 2

THEORY OF STATIONARY RANDOM SEQUENCES

In this chapter basic results in the correlation theory of stationary random se-

quences are reviewed. Sections 2.1 thru 2.3 provide some necessary background mate-

rial from probability theory concerning functions that characterize random variables

and, by extension, sequences of random variables. Section 2.4 is a mathematical

aside defining the Stieltjes integral which occurs frequently in this and the following

chapters. The remaining sections deal strictly with second order theory of station-

ary random sequences. The spectral representation is of particular interest because

extensions of this theory are used in the next chapter to define the joint spectral

density of a pair of random sequences. Many excellent references are available that

cover this material, so well known theorems are stated without proof except where a

brief sketch will provide insight to the theory without diverging too far from the flow

of the discussion [8, 9, 10, 11, 1, 7, 12].

2.1 Distribution Functions

Consider a complex valued random sequence {X(t)}, t = 0, =El, =E2,-.- =E (n - 1).

Since {X(t)} is complex valued, each element of the sequence can be written as

x(t) = u(t) -,.;t(t),

where {U(t)} and {V(t)} are real valued random variables. For finite n, {X(t)} is

completely characterized by its 2n-dimensional probability distribution function,

Fu(=,) .....u(t,,),v(t_)....v(,,)(ul , . . . , u,,, t'L ..... _'._) =

P(U(t_) <_u_,... ,6"(t,) <_u,,,V(t,) < v_,...,V(t,_) < _,,_),

(_.._
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where (xl,...,x_) E C_ and x, = ui + jvi [13]. For notational convenience, the

distribution function for a complex valued {X(t)} will be written as

Fx(tl) .....x(t,,)(zl, . . . , z,,), (2.2)

by which is meant (2.1). When it is not necessary to distinguish whether a set of n

random variables corresponds to n-length sequence of real valued random variables or

a _-length sequence of complex valued random variables, the notation (:X_,..., :Xn)

will be used.

A function F is defined as a distribution function if

1. F is monotonically increasing in each of its arguments,

2. F is right continuous in each of its arguments,

3. lim_,___F(xl,...,z,)=O (l<t<n),

4. F(+c_,...,+oo) < c_,

5. F(bl,...,b,) - E'_=lPi + _.i<jPi# _:"" + (-1)'_F(al,. -.,a,_) > 0,

for any ai and bi (i - 1,...,n), where pis.../, is F(c,,...,_) with c,. = ai, cj =

aj,...,ck = as and Cl = bt for all 1 # i,j,...,k [9]. The left hand side of the

condition in item (5) above is equal to the probability that (El,..., X,_) falls within

the parallelepiped

ai <_ Xi < bi,

that is,

P(al <_ _1 < bl,...,a,_ < T,,_ < b_).

If F(+cx_,..., +oo) = 1 then F is a probability distribution function.

The existence of a stochastic process corresponding to a particular a priorl -.'

of finite dimensional distribution functions,

Fzc,.....



is assured by Kolmogorov's theorem if two conditions are met [14]. That is, a set

of probability distribution functions are the distribution functions of some stochastic

process if and only if the symmetry (or permutation) condition,-

Fx,, .....x,o(x,,,...,zi,) =/_), ....x.(zl,...,z_),

holds for all permutations (ia,..., in) of (1,..., n), and the compatibility (or consis-

tency) condition

Fx, .....x..(xl,...,z,_) = Fxl ....._c.(zl,...,z,,, +c¢,..., +co),

holds for m < n. The compatibility condition ensures that the lower dimensional

distributions coincide with the margins of the n-dimensional distribution.

as

2.2 Density Functions

The derivative of the distribution function, if it exists, gives the density function

dF(zl,.. ., x,_)
f(zl,.:.,x,_) =

dzl.., dx,_

Explicit reference to the random variables {2Ci} has been dropped from the notation

for simplicity when the meaning is clear from the context. A density function has the

following properties [9]:

1. f(xl,...,x,,) > O.

2. P(al < Xl < bl,...,a,_ < X,_ < b,_) = f_:.., fs: f(xl,...,x,_)dxl ...dx,,.

3. f_cc.., f__c_f(zl,...,x,,)dxl ...dx,_ = 1.

As a consequence of the compatibility condition

/2/?f(xl,...,z,-,,) = "'" f(.rl,...,x,,)dx,_+l...dx,_,

so that the marginal density of {%1,.-.. %-, } is obtained by integrating out the ran

dom variables {X,,+I,..., :E,_}.



2.3 Characteristic Functions

The characteristic function of a random variable _ is defined as

¢(_) = Z[_J_] = ]f
oo

where F(x) is the distribution function of X.

#_dF(x), (2.3)

Theorem 2.1 (Bochner-Khinehin) A function ¢(wl,...,w,,) with 0(0,...,0) =

1 is a characteristic function if and only if it is non-negative definite.

In other words, the Bochner-Khinchin theorem says that the class of characteristic

functions coincides with the class of non-negative definite functions, which by defini-

tion means that

_ O(w, - w_)cjc" k >__O, (2.4)
j=l k=l

for any integer n, where ,_1,...,w, are vectors in /_ and cl,... ,c,_ are arbitrary

complex numbers. Any function that satisfies (2.4) is a valid characteristic function

for some random variable. Using (2.4) it is easy to show that non-negative definite

functions have the following properties:

1. ¢(o,..., 0) > o,

2. ¢(-¢ol,... ,-,_) = 0"(_,,... ,,_),

3. ¢(o,..., o) _>I¢(_,...,,_,)1.

A unique inverse relationship exists between a characteristic function O(wl,... ,,,.', }

and its corresponding distribution function F(zt .... , z_) given by [9],

P(al <_ _1 <bl,...,an < X, < b,) =

,im 1 f_r /_ft..T--oo(2_)" r" T k=l

¢(_,... ,x,) d_l.., d.'.



2.4 Stieltjes Integral

The integral on the right-hand side of (2.3) is the so-called Stieltjes integral which

will be used extensively in what follows [9]. The Stieltjes integral of a function 9(z)

with respect to the distribution function F(z) is defined as

b N

f_ g(z)dF(z)= lim __,g(2k)[F(zk) F(xk-1)]
max[zk--'vk--I I"*'0 k---1

where

a=xo<xl <'"<xN=b, andxk_l <5:k_<xk.

This generalization of the integral remains well defined even when F(x) is not every-

where differentiable. The improper Stieltjes integral where the interval of integration

goes from -oo to +oo is defined in the usual way as

lim g(x)dF(x).

b---.+_

If F(x) is differentiable with respect to x, then the Stieltjes integral reduces to the

ordinary integral

bg(x)f(x)dx

where f(x) = _ The Stieltjes integral can be applied to either Riemann ,)r
dx "

Lebesgue integration in which case it is called the Riemann-Stieltjes or Lebesgue-

Stieltjes integral respectively.

2.5 Moments

It is often more convenient to work with a partial characterization of a rand,,r,,

sequence in terms of a finite set of statistical moments. The first moment is simt,i,

the mean and is defined as

F= = xdFx. (x).
OO

ORIGINAL PAGE IS
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The second moment is defined as

R(t,,t2) = E[X'(t,)X(t2)] = x,x2dFx(t_),x(,2)(Xl,X2), (2.5)
Oo o¢_

and is called the autocorrelation function. Alternatively, the second central moment

can be formed by taking the autocorrelation of {X(t) - #(t)} in which case it is called

the autocovariance,

C(t,,t2)-- R(t,,t2)- E[#(tl)]E[#(t2)].

The convention of applying the term autocorrelation to (2.5) is standard among the

engineering community, however; mathematicians use the term autocorrelation to

signify the normalized autocovariance. Henceforth, use of the term autocorrelation

always refers to (2.5), and the mean of {X(t)} is assumed to be zero so that the

autocorrelation and autocovariance are identical. This assumption results in no loss

of generality.

2.6 Stationarity

A random sequence, {X(t)}, is strict-sense stationary if its distribution functions

are independent of shifts in the index t

Fx(,,) .....x(,,.,)(z,,..., z,,,) = Fx(,,÷.) .....x(,,.,+,)(x,,..., x,,.,),

for any integer i [4]. If the joint distribution of two sequences {X(t),Y(t)} is sta-

tionary then the sequences are said to be jointly (or mutually) stationary. Clearly

from (2.1) a complex sequence is stationary if its real and imaginary parts are jointly

stationary.

A less restrictive form of stationarity, ,:ailed wide-sense stationarity, only requires

that the mean be constant

= E[.\(t)] =

: _" _ * ' ' i " _- :'-_¢"_" :_e_



and the correlation function depend only on the difference of the indexes

R(t,,t_) = R(,)= E[X'(t,)X(t, + T)],

where r = t_ - tl. Consequently, the autocorrelation is independent of the absolute

starting point, tl. Henceforth, when a random sequence is called stationary it means

stationary in the wide-sense. Since Gaussian random sequences are fully described in

terms of their first two moments, in this special case wide-sense stationarity implies

strict-sense stationaxity.

2.7 Properties of Autocorrelation Functions

Theorem 2.2 A function R(r) defined on integers is the autocorrelation function of

a zero-mean, stationary random sequence if and only if it is non-negative defintte.

That is,

rl n

_ R(j - k)c_cr,> 0,
.7=1 k-'l

for any positive integer n and arbitrary complez numbers cl,... _ [12].

As a consequence of being a non-negative definite function, the autocorrelation of a

complex valued random sequence has the following properties:

1. R(O)> O,

2. IR(r)l ___n(O),

3. n(_)= R'(-_).

From the first and second property, the autocorrelation must have its maximum val,_,-

at zero lag and be non-negative at that point. The third property indicates that Rt o

is a Hermitian function.

Comparing the properties of autocorrelation functions with the propertie_ t

characteristic functions from Section 2.3, it is apparent that an close relation-i;,;,

exists between the two. A variation of Herglotz' Theorem (Theorem 2.3 in the t,,.,'
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section) states that a function, R(r), defined on integers is non-negative definite, and

thus an autocorrelation function, if and only if it coincides on the set of integers with

a characteristic function, _(w), defined by

• (w) = eJ_dF(x),
It

where w is continuous on R 1 [15].

2.8 Spectral Representation of Correlation Functions

Theorem 2.3 (Herglotz) A complex valued function R(r) is non-negative definite

if and only if it has a representation

ZR(_-)= e_m dP(_), (2.6)
71"

where F(_) has the properties of a distribution function on (-Tr, r].

F(,_) is called the spectral distribution function and as stated in the theorem it has

all the usual properties of a distribution function except that it is defined on (-rr, _],

such that

F(X) = O, _ < -r,

F()_) = F(_'), A >_ r.

If a correlation function is absolutely summable,

OO

IR(_-)I_ < oo,

then R(r) can be represented in terms of it Fourier coefficients

R(r) = ff_ eJ" f($)dA,

where

f()_) = 2---_ _ e-J'_"R(r)'

is the power spectral density which has all the properties of a density function define,{

on (-_, _]

,t',\"
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2.9 Spectral Representation of Stationary Random Sequences

Theorem 2.4 (Cram_r) Any zero mean stationary random sequence can be repre-

/"X(t) = eJ:"dZ(A),
7f

seated in the form

(2.7)

where {Z(A)} is a complex valued random process with orthogonal increments defined

on

A proof of this theorem due to Cram_r is given below in a non-rigorous form to

help illustrate the essential properties of the spectral representation [8, 10, 1, 16, 17].

Thorough treatments of the Hilbert space theory necessary to understand what follows

are available in the literature [12, 17].

Let H be the Hilbert space formed by the collection of all complex valued random

variables with zero mean and finite variance. Then for each value of t, the random

variable X(t) belongs to H. Let H_ denote the closed linear subspace of H that is

spanned by the random sequence {X(t)}. The inner product of two elements of tt_

is defined as

(z,,z2) = E[z'_z2],

and the distance between two elements is defined as

dC ,,x2) IIx, - x: ll= _/E[Iz, - z 12].

(2.s)

(2.9)

Denote by L2(F) the set of all complex valued functions, O(A), on the interval

(-_', r] for which the Lebesgue-Stieltjes integral

_" [O(A)12dF(A),

exists and is finite. Here F is the spectral distribution function of X(t). Then L2_ ,_'_

forms a Hilbert space H0 with the inner product of two elements 01 and 02 defined ,t_

(0,,02) = O;(_)O:(_)dF(_),
7¢



and the distance between 01 and 02 defined as

!

A linear, one-to-one mapping between two spaces that preserves inner products

is known as a congruence. A congruence between H, and H0 can be established as

follows. Let z(t) E H, and O,(A) = e_' _ 1to be corresponding elements in the two

spaces. By Herglotz' Theorem,

/:R=(t,u) = E[z*(t)z(u)]-- e-_"e-i_"_dF()O.

Comparing the spectrM representation of the autocorrelation with the definition of

the inner product in/-/_, and H0 it is evident that the inner product is preserved for

a mapping M such that

and for linear combinations of {0t(,X)}

M [_(c_Ot,(A)] = __c,M[Ot,(A)].

Now let l(xl,x21(A) be the indicator function defined such that

l(x1"_2l()t) = otherwise.

Simple functions in He can be written in terms of the indicator function in the

following manner:

n

0,(a) = dim ), (2 i,,,
i=1

where A_-a _< ), _< hi and -a" = Ao < A1 < ... < A,_ = 7r. The indicator function it_.if

is an element of Ho. Define Z(A) as the random process in H_ corresponding to I t,..

indicator function in H0 through the mapping M as follows:

Z(A2)- Z(A,) = M[I(_,,_2](A)].

ORIGINAL PAQI_ II
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Clearly, Z(A) is orthogonal over disjoint increments since for [A,, A2) gl [A3, A4) = 0,

E [{Z(_,)- Z(_3)}'{Z(_)- z(_,)}] = <1(_3._,j(_),x(_,._,j(_)>

-'0.

If inner product is preserved by the mapping M, that implies that distance is also

preserved so that,

Z [[Z(/_2)- Z(/_l)[ 2]

Applying the mapping M to (2.10) gives

n

= F(,\_)- F(£_).

M[Ot(A)] = lina _ O,(i)M[I(_,_,._,I(A)] = lirn _ Or(A)[Z(Ai_,) - Z(A,)]
i=0 i=0

which converges to the Stieltjes integral

fx(t) = O,(A)dZ(a).

Substituting 0t(A) = e_xt gives the spectral representation in (2.7). The integral on

the right-hand side of (2.7) is a stochastic Stieltjes integral with respect to a random

measure, in this case Z(,_).

2.10 Orthogonal Increment Process

An orthogonal increment process, Z(X), has the following properties:

1. E[Z(_)] = 0,

2. va_[z(_)] < o¢.

3. Cov[Z(,_,)- Z(._3).Z(_2)- Z(,_,)] =0, (2.11)

where (_,,_2] Cl (A3,)_,] = 0 and Coy[X, Y] and Var[X] are defined as

co, IX,v] = E[x'Y],



The orthogonal increment process, Z(A), is related to the spectral distribution func-

tion in (2.6), f(,k), by

F()_2)- F(A,)= Var[Z(A2)- Z(A,)]. (2.12)

Recall that F(-Tr) = 0, so letting A1 = -Tr causes (2.12) to reduce to

F()_) = Var[Z()_)- Z(-Tr)],

where Z(-Tr) is the starting value of the orthogonal increment process which can also

be set to zero without affecting the values of the increments [12]. Considering (2.11)

and (2.12), the relationship between Z(A) and F(A) can be expressed as

E[dZ'()_)dZ(i)] = 6(_ - i)dF($).

The inversion formula for Z(A) is given by

1 _ e -ix'- (1)tX(t) + Z(-r).
Z()Q = lim -jt

It can be shown that X(t) is Gaussian if and only if Z(A) - Z(-_r) is Gaussian [8].

2.11 Brownian Motion

One dimensional Brownian motion [12], {B()_), -_" < _ _< r}, is a simple

example of an orthogonal increment process which is Gaussian distributed with

E[B(A)] = 0

a2(A + 7r)

The spectral distribution function corresponding to a Brownian motion process sper

ified as above is given by

0

_>r.



Substituting F(A) into (2.6) gives the autocorrelation as

/"R(r) = e j_" dF(A),
If

0 "2 flr= _ ,, e TM dA,

= a_5(h).

21)

As expected, the autocorrelation of a random sequence with a Brownian orthogonal

increments process is an impulse at zero lag because the spectral density is uniform

on (-_, _].



CHAPTER 3

JOINT SPECTRAL DENSITY

In Chapter 2, a univariate random sequence was shown to have a spectral rep-

resentation in terms of an orthogonal increments process. Furthermore, taking the

variance of this orthogonal increments process gives the spectral distribution func-

tion which acts like a probability distribution function of the frequency content of

the random sequence. At times it is more convenient to work with the distribution

function rather than the density function. This should cause no difficulty since the

density function can be found by taking the derivative of the distribution function

(assuming that it is differentiable).

The purpose of this chapter is to extend the idea of a PDF of frequency content

to the case of two random sequences. Clearly if the joint spectral density is to be

completely analogous to a joint PDF, it must be a real valued function of multiple

arguments (in this case 2). In Section 3.1 classical spectral analysis of bivariate

random sequences is discussed in terms of the correlation matrix and the spectral

density matrix. Since these are matrix valued functions of a single argument, they

cannot be considered candidates for the JSD. And yet, they contain all the available

information about the joint probability structure of the two sequences. In Section 3.2

the spectral representation of stationary random fields is discussed and it is noted

that the spectral density function of a stationary random field has the same form and

properties that are desired for the JSD. The properties of two-dimensional orthogonal

increments processes are explored in Sect ion 3.3. The joint spectral density is formallv

introduced in Section 3.4 by treating the autospectra of the bivariate random sequence

as the marginal spectra of a stationary random field.
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3.1 Bivariate Correlation and Spectral Properties

The correlation theory of bivariate random sequences is well documented in the

literature [1, 12, 7, 19]. Consider two jointly stationary random sequences {X1 (t) }, {X2(t) }

that have the following spectral representations:

FX, (t) = eJ_tdZ, (_),
It

(3.1)

FX2(t) = eJ_'dZ2(1), (3.2)

where {ZI(_)}, {Z2(_)} are orthogonal increment processes. Then assuming that

both process have zero mean (i.e., E[Xx(t)] = E[X2(t)] = 0), the autocorrelation

functions can be written as follows:

/_"R,,(r)- E[X;(t)X,(t + v)] = eJA*dF, I(A), (3.3)
It

FR2_(r) = E[X;(t)X2(t + r)] = e:_'dF22(_),

where Fx1(_) and F2_()_) are the spectral distributions of the two processes.

from Section 2.9 that

(3.4)

Recall

Var[dZ,(A)] = dF, (3.5}

Var[dZ2( _ )] = dF22( A). (3.61

A facet of the analysis of multivariate processes that is absent when considerin_

the univariate case is the interaction between pairs of processes. This information is

captured by the cross-correlation. The cross-correlation is given by

= E[X;(t)X2(u)]. (3-

Substituting (3.1) and (3.2) into (3.7) gives

///"Rl_(t,u) = e-J)_teJh'E[dZ;(A)dZ2(_)].
It _t

(3"
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If {X1 (t)}, {X_(t)} are jointly 2hal-order stationary then their cross-correlation will be

a function only of the shift index r = u - t and will be independent of the starting

index t. For this to be the case in (3.8), the following condition must hold:

E[dZ;(A)dZ_(_)] = 0 A # _, (3.9)

and therefore,

R,_(r) = eJa'E[dZ;(A)dZ_(),)] = eJX'dF12(A), (3.10)

where F12(I) is the cross-spectral distribution function. The cross-correlation function

is not necessaxily non-negative definite, so it need not share the same properties as

the autocorrelation. One significant difference is that the cross-correlation may have

its maximum value away from zero lag. As a result, F12(,\) is in general complex

valued and even if it is real valued is not necessarily non-decreasing. It is however a

function of bounded variation because its real and imaginary parts are the difference

of two non-decreasing functions respectively [7].

For bivariate random sequences, the auto- and cross-correlations are often as-

(3.11)

sembled into a correlation matrix given by

RI_(T)
R(r) =

/hi(T)

The two cross-correlation elements of the correlation matrix yield redundant infor-

R,2(_) = R_:(-_).

mation since

(3.12)

If the elements of R(r) are absolutely sumrnable,

IP_j(,)l2 < 2,
T OO

then spectral density matrix is given by

1 '_

f(£) = --
27r

e--/_'R(r) (3.14)

i,j = 1,2, (3.13)
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where

f(A) =

and

dFq(A)
f#(A) -- dA

Properties of the elements of the spectral density matrix include

(3.15)

(3.16)

f,,(A) > o,

A2(_) > o,

If_21;_ f_l(_)A_(_),

where the third relation is a consequence of Schwartz' inequality. The cross-spectral

density, fl_, is also complex valued in general, so it can be written in terms of pairs of

real valued functions in a couple of different ways. Each of these ways of writing f12

offers a particular interpretive viewpoint. Breaking f12 down into its real and imag-

inary parts gives the co-spectrum (real part) and quadrature spectrum (imaginary

part) as

fl2(,_) = 02(,_) - jq,2(A).

Writing ]'12 in polar form gives the cross-amplitude spectrum and phase spectrum as

f_(A) = a_(_)e J_'_(_l,

where

_,2(A) = If,2(A)1= x/c,_2(A)+ q_2(A),

¢,_()_) = arg(fx2()Q) = arctan (--q,2()_) )\ c_2(_) "
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The properties and interpretation of the co-spectrum, quadrature spectrum, cross-

amplitude spectrum, and the phase spectrum are treated in depth in the literature

[i,7,19].

The complex coherence isdefined as

_A1 (A)f22(A)

The complex coherence is sometimes referred to as the correlation coefficient in the

frequency domain, but it should not be confused with a correlation coefficient between

the frequency content in the two random sequences. It is, rather, "the correlation

coefficient between the random coefficients of the components" in the two random

sequences at each frequency [1].

The correlation matrix and the spectral density matrix describe the joint prob-

ability structure of the bivariate random sequence, however; if the auto-spectra are

interpreted as the probability densities of the frequency in each random sequence,

then it might be possible to reorganize the information available in these matrix val-

ued functions to form a joint probability density function of the frequency content in

the two sequences. In the following two sections this problem is set within the frame-

work of the spectral representation of stationary random fields and their marginal

spectra.

3.2 Stationary Random Fields

It is well known that the spectral representation theorem for random sequences

can also be extended to stationary random fields [20, 7, 1]. A random field is called

stationary if the mean is constant

#(t,u)- E[X(t,u)] = l_, (3.17)

and the correlation function is function only of shifts in its arguments

= R(T,.)= (3.1S)
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where r = v - t and v = w - u. This two-dimensional autocorrelation function has

a spectral representation

R(r,v) = d(_I"+_2")dF(A1,A2), (3.19)

where F(A1,A2) has the properties of a distribution function on (-r,r] x (-Tr, Tr].

If F(21, A2) is differentiable, then the random field has a spectral density, f()h, A_),

given by

f(Al,A2) -
dF(A1,A2)

dAldA_ '

where f(A1,A2) has the properties of a density function on (-lr, rr] x (-Tr,_'].

Theorem 3.1 Any zero mean stationary random field can be represented in the form

X(t,u) = e_(_"+_2_)dZ(A1,A2), (3.20)

where is an o hogonal incrementprocesson × [SO,7].

The proof of this theorem given below is the author's extension of Cram_r's proof of

Theorem 2.7 to random fields.

Let H, be the closed linear subspace of H that is spanned by the random field

{X(t,u)} (see Section 2.9). The inner product and distance for H, are defined as

(2.8) and (2.9) respectively.

Denote by L2(G) the set of all complex valued functions, kg()h, A2), on (-r, _-] x

(-r, r] for which the two-dimensional Lebesgue-Stieltjes integral

/" j(" I_P(A,,A_)I'dG(A,,A2), (3.21)
_I" Ir

exists and is finite. Here G is the two-dimensional spectral distribution function of

X(t, u). Then L2(G) forms a Hilbert space H,, with the inner product of elements _-'x

and ¢2 defined as

(_1, ¢2) = ¢;(At, A_)_2(A,, A_)dG(A,, A2). (3.22)
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Toconstruct acongruencebetweenH_ and Hw, let X(t, u) E H_ and Wa,(A1, A2) =

e_Cxlt+_2") E He be corresponding elements in the two Hilbert spaces. By Hergtotz

theorem in two dimensions,

v, w) =

E[x'(t,u)x(v,w)] = f" If
ff_ qe

=////
e-j(_, t+_2,,)ej(;_1_,+_2_,)dG(Aa, A_)

=

Then the inner product is preserved for the mapping T such that

T U _''+_'_] = X(t, _,).

Let I(u,u,I×(_,_A(A,, A_) be the indicator function defined on rectangles such that

l("""']x(_"_'l(Ax'A_)={10 otherwise.#i<Al-<#J' vi<A2<_uj

Simple functions can be constructed from this two-dimensional version of the

indicator function as follows:

n

_,,t(A,,A_) = lirn _ ¢,t(_,,_)I(_,,_,.,,,I×(,,,_,.,,,](A,,A2)
i,j=l

where

/z;-1 <A_ < tq,

vi-1 <A2 < v;,

-r = Ao <"" < A,_

--71" "- /I 0 _.-. _ t,' n -- 7r.

The indicator function is also an element of He, so we can define its correspondinf

random process, Z(A1, A2), in H_ as

Z(m, v2) - Z(tt2, t,,) - Z(#,,v2) + Z(Iz,,v,) = T [l(_,,_,lx(_,,,_l(A,, A2)] .(3.2 1
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It can be shown that Z(A1, A2) has orthogonal increments since for non-intersecting

rectangles, the inner product of the indicator function is equal to zero. Since distance

is preserved by the mapping T,

E[IZ(/22,/./2) - Z(_2,//1) _ Z(IA1, /]2) .jV Z(/21, /]l) 2]

= IIl(._,._]x(,.,,,_](A,,A;)II2

,,_u I_'_ j_ P':_
= dG(ll, t2)

1 !

= a(u2, _,2)- a(m,., ) - a(u,, _,_)+ a(m, _,,).

Applying the mapping T to (3.23) gives

T[¢st(_l,_2)] = dim _ O,t(_l,_2)T [I(,._,.,.]x(_,_,._,](A1, A2)],
i,j=l

n

= _im _ _.,(i,,i2)[z(.,,.j)- z(u,,..-,)- z(_,_,,.j) + z(.,-1,-,_,)],
i,j=l

which converges to the two-dimensional Stieltjes integral

l'fx(t,u) = _,,,,(A,,_)dZ(Aa,.X2).

Letting _Pt,,()q, ,_2) = ei(_lt+'_2u) gives the spectral representation of a two-dimensional

random field

ffX(t,u) - e'_('_tt+'_u)dZ()_l,)_2). (3.24)

3.3 Properties of Z(/_I, A2)

An orthogonal increment process in two dimensions has properties similar to the

one dimensionM case.

_. E[Z(_,, A_)]= o,

2. Var[Z()q,)_2)]< c¢,

3. Co.[/',Z {(U_,u,] × (._,.,]},_Z {(_,,m] × (_,,_]}] =0,
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where (U_,m] x (y_,_] n (re,m] x (va, ud = o.

dimensions is defined as follows:

The increment operator A in two

AZ {(/A1, ]A2] x (pl, v2]} -- Z(U2,1,,2) - Z(/A1, p2) - Z(#2,/]i) AV Z(IA1, btl).

The random measure AZ{(/_I,/_2] x (ul, v2]} is related to the spectral measure by

× = Var[ Z{(u,,Ud ×

To see this relationship more clearly, consider computing

Co,,[_XZ {(U3, U,] × (u3, u4]} ,/'Z {(Ux,U21 × (u_,u=l}l,

where (/_,#2] x (ux,u_] N (#a,#4] x (ua, u4] -J: 0. This situation is depicted in Fig-

ure 3.1. The only non-zero contribution to the covariance is from the region where

the rectangular increments overlap (the shaded region in the figure). Therefore, the

covariance reduces to

Cov[_XZ {(re, U,] × (_,u,]},ZXZ{(_,,m] × (Ul, U_]}] = Var[_XZ{(_3, Ud × (u,,_,]}]-

As the rectangular increments are shrunk down to infinitesimals, the rectangles will

only overlap if their vertices coincide so that we are left with the short-hand notation,

Cov[dZ(A_,A2),dZ(fq,f2)] = 6(X,- )_)6(X=- S2)dF(X_, A=).

3.4 Joint Spectral Density

Definition 3.1 The joint spectral distribution, F(A1, As), of two random sequences.

X, ( t ) and X2( t ) with corresponding orthogonal increment process ZI(A) and Z2(A) is

equal to the spectral distribution function of some stationary two-dimensional random

field such that

F(A,_) = Var[Z,(A)],

F(,_,A) = Var[&(_,)],

and is consistent with the Cov[Z_(A_),Z2(A2)] away from the margins.
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Figure 3.1. Covaxiance of a two-dimensional orthogonal increment process.
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The last line of the definition deservessomecomment. In general, the joint spectral

distribution (or density)is underdetermined by Xl(t) and X2(t). However, under

certain conditions it is possible to establish a relationship between the cross spectral

distribution, F12(A), and F(A1, A2) at points away from the margins. In these cases,

the joint spectral distribution can be uniquely determined for a given pair of random

sequences. Initially it might seem that this idea violates the well known maxim

that the joint probability density can not be uniquely determined from the marginal

densities. However, there is more information available than what is contained in the

marginal spectra. Recall that the power spectral density is not a sufficient statistic for

a random sequence since the phase information is discarded by taking the magnitude

squared of the orthogonal increment process, Z(A). Thus conditions may exist under

which the cross-correlation or equivalently the cross-spectrum contains the additional

information necessary to form the joint density.

To construct the joint spectral density of a bivariate random sequence, it is

necessary to take the information in the spectral density matrix, (3.15), and somehow

form it into a two-dimensional spectral density function like f(A_, A2). Consider the

spectral representation of the autocorrelation of some random field, X(t, u), that was

given in (3.19)

Notice that setting either r or v equal to zero is equivalent to integrating out A1 or

A2 respectively,

ZZ Zal,(r) = R(r,O) = eJh'dF(X,,A2) = eJa'_'dFu(A,), (3.25)

F/ /"n2_(r) = n(0, r)= e_2"dF(X,, A_)= e'i_'2"dF22(A2), (3.26)

where R_a(r) and R2_(T) are the marginal correlation functions and Fu(A_) and

F22(A2) are the marginal spectral distributions. This is necessary for F(A1, A2) to
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Figure 3.2. Example of a two-dimensional distribution function, F()_I, )_2).
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satisfy the compatibility condition. Then Fix(A1 ) and F2s(A2) are related to F(AI, As)

by

F,l(/k) = Var[Zi(A)- Zl(-lr)]

= va,-[z(A,.-) - z(:_,-,_) - z(-,_, _-)+ z(-.-,-.9]

= F(A, rr), (3.27)

Fs2(_) = Var[Z2(_)- Z2(-_-)]

= var[z(_, A)- z(_,-_)- z(-_, A)+ z(-_,-_)]

= F(Tr, Jr). (3.28)

If the marginal spectral distributions of a stationary random field are set equal to

the auto-spectral distributions of a pair of random sequences, then F()tl, A2) will be

consistent with the joint spectral distribution of those sequences along the boundaries

,kl = re and ,ks = 7r. Figure 3.2 shows a plot of a two-dimensional distribution function

on (-rr, rr] × (-re, 7r]. Notice that on the boundaries along A1 = -Tr and _2 = -rr

the joint distribution function is equal to zero and that it is monotonically increasing

in each of its arguments until they reach re where the joint distribution function is

equal to the marginal distribution function. To complete the specification of the joint

spectral distribution, it remains to determine F(AI, A_) in the interior region away

from the margins in terms of the joint statistics of Xl(t) and X2(t).

Under certain symmetry conditions, knowing the diagonal slice, F(,k, )_), in addi-

tion to the margins is sufficient to completely specify F(_l, ,ks) over (-_', 7r] × (-rr, 7r].

The Gaussian distribution is an example since its density function exhibits elliptical

symmetry (see Appendix B). The projection-slice theorem is an interesting property

that relates slices through a two-dimensional correlation function to projections in

its Fourier transform as depicted in Figure 3.3 [21]. If R(r, v) is evaluated along the

slice formed by setting v = r, then

i_i;R(r) = R(r,r)= eJ(x'+J_)'dF(_l,A2), (3.29)
iF re



-- 34

results. Taking the one-dimensional Fourier transform of/}(r) yields a projection of

the joint power spectral density along the 45 ° line formed by setting As = )h.

OO

f(A) = 2""__ R(r)e-J_" (3.30)
_OO

, = [f_.j;. )]= -- Y_ e-sx" eJ(_'+_)'dF(A,,A2 . (3.31)
271" --oo

Assuming F(Ai, A2) is differentiable, i.e.,

dF(A,,A2) = f(A,,A2)dA, dA_, (3.32)

then

[I22 ]f(A) =2"_rl e-J_ _ eJ(_'+_2)'f(Ai , As) dA1 dA_

i ]=1 " e_(_'+j2-x)" f(Ai,Ai)dA, dAi
2_ _

=2_ _ f(A,,A- A,)dA,.

If f(A1, A2) is separable in its arguments such that

(3.33)

=

then (3.33) reduces to the convolution of fl(A,) and f2(A2). Notice that in this case.

f(A) corresponds to the probability density function of the sum of A1 and A2 where

they are statistically independent random variables.

The author knows of no existing method for computing arbitrary slices R(r, v)

that are not on the margins. At this point we reach an impasse and need to find

a way to further constrain the problem. The interrelationships among the various

time and spectral domain representations are summarized in Figure 3.4. Lines that

have arrows on both ends signify Fourier type operations which are bidirectional.

Lines with arrows on just one end signify one-way operations that are either of the

covariance type, or involve extracting the margins. Starting from Xl(t) and X_(t)
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at the bottom notice that there is no direct path to the goal of a joint spectral

distribution at the top. The premise is that given certain restrictions on )(1 (t) and

X2(t), the combined information in the auto- and cross-spectra (or correlations) can

form a link to F(A1, A_) (or R(r, v)).
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Slice

_ R(O,_)

R(x,O)
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_K,2

\

Projecti

Figure 3.3. A slice of the two-dimensional correlation function and the corresponding

projection of the spectral density.
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Figure 3.4. Schematic diagram of the relationships among various time-domain and

spectral representations.



CHAPTER 4

MARGINAL SEQUENCES

4.1 Introduction

One way to constrain a pair of random sequencesso that they uniquely specify

the joint spectra density is to assumethat they are the marginal sequencesof some

stationary random field. This restriction implies that the spectraof the two sequences

correspondto the marginal spectraof the random field, but in generalthe converseis

not true. That is, if the spectraof two sequencesare the marginal spectraof a station-

ary random field, it doesnot necessarilyfollow that the sequencesare the marginal

sequencesof that or any other stationary random field. This is a consequenceof the

"many-to-one" relationship betweensequencesand their power spectral densities. It

is well known that many sequencesmay share the samepower spectral density, but

that any particular sequencehasone and only one powerspectral density [22].

4.2 Basic Concepts

The marginal sequencesof a two-dimensionalstationary random field, {X(t, u)},

are defined as the pair of random sequences that result from setting t = 0 and u = 0

respectively,

Figure 4.1 shows how the marginal process are related to the random field as a whole.

One of the distinguishing properties of marginal processes that is clearly illustrated

in Figure 4.1 is that the two sequences must start at the same value.

xl(0) = x(0,0).
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Xl(t) J

Figure 4.1. Marginal process of a two-dimensional random field.

Further restrictions result directly from the assumption that the random field is

stationary.

Theorem 4.1 The marginal sequences of a stationary random field are individually

stationary.

This theorem follows directly from the definitions of a stationary random field and

its marginal processes. A random field, {X(t, u)} is stationary iff

R=(_,.) = E[X*(t,_)X(t + _,_ + .)]. (4.1)

Letting u = 0 and v = 0, gives

n_(r,O) = E[X'(t,O)X(t + r, 0)],

= E[X;(t)X_(t + r)],

= Rll(r). (4.2)
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Similarly it can be shown that X2(t) is also stationary. From (4.2) it is clear that the

autocorrelations of the marginal processes correspond to the margins of the autocor-

relation of the stationary random field. That is,

R,,(7-)= _G=(7-,0)

R2_(7-)= P_=(0,7-).

Theorem 4.2 The marginal sequences of a stationary random field, X(t, u), are

jointly stationary iff the autocorrelation of X(t, u) can be written in the form

R==(7-,.)= P_=(v- r).

Again, the proof follows directly from the definitions of a stationary random field and

its marginal processes. In (4.1) let u = 0 and t + 7- = 0, then

n==(7-,.)= E[X'(-7-,O)X(O, .)],

= E[Xr(-r)X2(v)],

= R,2(-7-, v). (4.3)

Only in the special case where R,_(7-, v) = IL_::(v - 7") will the marginal sequences be

jointly stationary. Returning to (4.1), if we let t = 0 and u + v = 0, then

R=(7-,v) = E[X'(O,-v)X(7-,O)],

= E[X_(-.)XI(7-)],

= R2,(-v, 7-). (4.4)

Comparing (4.3) and (4.4), gives

R,_(-7-, v) = R21(-v, 7-).

Since R:=(7-, v) = R_=(-r,-v), we also have

a,_(-7-,.) = _(7-,-.)

R_(-., 7-)= Ri,(-,-7-).
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Therefore R12 and R21 are hermitian functions and are non-negative definite.

result, FI_ and F2a are real-valued and non-decreasing.

As a

4.3 Properties in the Spectral Domain

It might be expected that the correlation relationships for marginal processes

from the previous section have a significant effect on the spectral domain characteri-

zations. In this section that is shown to indeed be that case.

Theorem 4.3 [f Xi(t), i = 1,2 are the marginal sequences of a stationary random

field, X ( t, u ) , then

z,(,_) = z(A,,_)- z(,_,-,_),

z2(A) = z(_, A)- z(-_, A),

(4.5)

(4.6)

where Zi( A ) are the orthogonal increment processes corresponding to the marginal

sequences and Z(A1, A2) is the orthogonal increment process for X(t, u).

To prove this theorem, consider the spectral representation of a stationary ran-

dom field,

q¢

Setting u = 0 gives an expression for the marginal sequence in terms of the two-

dimensional orthogonal increment process, Z(),t. _),

/_ /_"= e_"' dZ(A,,A_t, (4.7)

where the inner integral is with respect to A_ and outer integral is with respect to A_.

Recalling that the spectral representation of X_(t) is given by

x,(t) = f'_..eJ'dZ,(_),
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and comparing this with (4.7) gives a relationship between the marginal orthogo-

hal increment process, Z1 (A) and the two-dimensional orthogonal increment process,

Z(_I, A2),

dZ,(_,) = dZ(_,A_),

where the integral on the right hand side is with respect to A2. This expression can

be evaluated by integrating both sides with respect to A1 over the interval (a, b] and

applying the definition Stieltjes integral.

Z1(b)- Z_(a) = lirn _ Z(tti, uj)- Z(la,,uj_l)- Z(t_i-l,uj) + Z(,i-l,ui-1)
i,j=l

where a = #0 < "'" < #,, = band -_r = u0 < --" < u,, - w. By the noting the

cancelation of terms in the summation, it is easy to verify that

z,(b)- Z_(a)= z(b, _)- z(b,-_)- z(a, _) + z(a, -_).

Equating terms on both sides gives

Z,(b) = Z(b, zr)- Z(b,-r)

Z,(a)- Z(a,r)- Z(a,-_r).

In a similar manner (4.6) can be proved.

Corollary 4.4 If Zx(A) and Z2(A) are orthogonal increment processes correspondinq

to the random sequences Xx(t) and X_(t) respectively, and are related to the two

dimensional orthogonal increment process, Z(A1, As), by

z,(_) = z(_,_)- z(_,-,_),

z_(_) = z(_,A)- z(-_,_),



then

x,(t) = x(t,o),

x_(t) = x(o,t),

where X ( t, u) is the stationary random field corresponding to Z(A1, A2).

The proof is a simple variation on the proof of Theorem 4.3 and will not be given

here.

Setting the starting point of the orthogonal increment processes to zero which

results in no loss of generality, we get the following expressions:

Substituting Z(A, _-) and Z(Tr, A) into the expression for the cross-spectral distribution

gives

F,_(,_)= E[Z;( A)Z_(,_)]

= Co,,[Z(A, ,_), Z(,_, _)].

Recall that Z(A1, A2) is a two-dimensional orthogonal increment process so the covari-

ance of Z(A1, A2) over two intervals is only non-zero where the two intervals overlap.

If the two intervals are disjoint then the covariance is identically zero. Therefore,

referring to Figure 4.2, it is easy to show that

Co,,[z(,_,, ,_),z(,_, ,_,)]= F( A,,,_,). (4.8)

Hence for this special case, the cross spectral distribution is equal to the joint spectral

distribution along the diagonal ha = A_.
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Figure 4.2. Domain of a two-dimensional orthogonal increment process.

4.4 Jointly Stationary Marginal Sequences

To evaluate the effect that assuming the marginal sequences are jointly stationary

has on the JSD, start with the expression for the correlation of a stationary random

field

R(r, v) = E[X'(t,u)X(t + r,u + v)].

Suppose R(r, v) is evaluated along v = 0, then

R(r, 0) = E[X'(t,u)X(t + r,u)],

= E[X'(O,O)X(T,O)],

= E[X;(O)Xl(r)] = E[X;(O)XI(r)].
• _ • T •

R. (_) R2_(_)

(4.9)
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Similarly, if R(r, v) is evaluated along r = 0, then

R(O,v) = E[X'(t,u)X(t,u + v)],

=E[X'(O,O)X(O,v)],

= E[X;(O)X2(v)]= E [X_(0)X2(_)!.
Y Y

Rt_(v) R22(v)

Also since both XI(0) and X2(0) are equal to X(0, 0),

(4.10)

Rl1(7") = E[X;(O)X,(v)] _- E[X_(O)X,(r)]-_ R22(r). (4.11)

Comparing (4.11) to (4.9) and (4.10) it is recognized that all of the auto- and cross-

correlations functions are identical,

In the spectral domain this implies that

Fll(A) = FI:(_) = F_,(A) = F:_(_).

Recalling that

F,_(_) = F(A, A),

we have

F(A,_r) = F(A, A)= F(_-, A).

Unfortunately this is a trivial result from the standpoint of estimating a joint spectral

density given an arbitrary pair of random sequences because the two sequences are

required to have the same PSD. Even so, there is some pedagogical benefit to carrying

this a bit further with a couple of simple examples.
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4.5 Some Examples

A class of two-dimensional distribution functions defined on (-Tr, r] x (-r, _']

satisfying the conditions,

F(A,.)- F(A, A)= F!., A),

can be constructed as follows:

1. Choose any valid one-dimensional distribution function G(A),

2. Set F(A1,A2) = G(min(Al,A2)).

Since F(A1, A2) must be non-decreasing in each of its arguments, it will have contours

of constant value as shown in Figure 4.3. The joint spectral density is given by

f(A1,A2) =
F(A1,A2)

dA1 dA2

G(min(A_, A2))

dAl dAs

Note that the min(A_, A2) can be written as

1

min(A,, A2) = _(A, + As -IA, - A21).

By applying the theory of generalized functions (also known as the theory of distri-

butions) we can evaluate the derivative of min(Al, A2) with respect to A_ and As as

follows:

d

dAldA2

1 d

min(A,,A2) = 2d.k,d._s(A, + As- lax- A21),

1 d
= x-_-, (1 + _gn(_,- As)),

z aA 1

1 d

= _-, (l + (2_,(A,- As)- i)),
d

- u(A1 - ,\2),
dA_

=6(Ai -- As),

where sgn(x) is the signum function and u(z) is the unit step function [23, 24, 25].
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Figure 4.3. Contour plot of F(Ax, A2) for jointly stationary marginal sequences.

Applying the chain rule of differentiation, it can be shown that

f(A,,A2) = g(min(A,,A2))5(A_ - _2),

where g(A) is the density function corresponding to G(A). The joint spectral density

is concentrated on the line A1 = A2 and is zero everywhere else. The following two

examples illustrate this class of JSD.

4.5.1 Uniform Margins

The distribution function, F(A1, A2), when the marginal spectra are uniform I,

given by

F(A1, A2) =

0

2r

02(_2+,r)
2_

¢7 2

Al or A2 _< --,,r,

--_"< At,A2 _<_r,

-rr < Al < rr,A2 > _r,

A1>Tr,-_r<A_<Tr,

Az and A2 >_ 7r.
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This function is plotted in Figure 4.4. The marginal spectral distributions rll(11 )

and F22(12) are equal to each other and correspond to a standard uniform distribution

on (-_r,_']. The joint spectral distribution, however, is not strictly uniform in the

sense that the joint spectral density is not flat over (-_', r,] x (-_', _'].

In order to find the autocorrelation function R(r, v), first evaluate

f(A,,A=) = dF(A1,A=)
dA1 dA=

a2_(11 - t2)
2r¢

The spectral density corresponds to a uniform density concentrated along the diagonal

11 = 12.

Substituting f(A1, A_) into (3.19) gives

"'Jgi'_R(r,v) = _ . ,_eJ(_"+':'l_(A'- A,)dA, dA,,

= _ ,e j('+')_2 dA2.

e_('+');_2 dA2 =

" otherwise.

Therefore,

R(T,.) = + .).

The autocorrelation is thus a train of impulses running along the diagonal r = -v.

4.5.2 Gaussian Margins

The distribution function, F(A1, 12), for the case of Gaussian marginal spectra

with zero mean and unit variance is given by

0

r(A,, =
A2-a )Q(-w.
1

11 or 12 < -Tr,

-Tr < 11,12 < 7r,

-_" < A1 < lr, As > _',

At _> _, -Tr < A _< 7r,

1l and 12 > _'.
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Figure 4.4. Plot of F(A,, A2) for jointly stationary marginal sequences with uniform

marginal spectra.
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See Appendix B for the definition of the Q-function.

The marginal spectral distributions Fll(A1) and F22(A_) are equal to each other

and correspond to a univaxiate Gaussian distribution. Figure 4.5 shows a plot of this

spectral distribution function.

The joint spectral density is given by

I(A1,A2)- dF(_I,A_)
dXldA2

1 (xl _.)2
- _"r;r-_;(Ai - _2).

Substituting into (3.19) gives

It(r, v) - v/_rl F, f__, es(_"+_2_)e-_(X,- X2) dX,d_2

-- e "7(_+v)X2 e-
d,X2,

= e- ½_2(,+,_)_ ej,(,+,,).

The envelope of this autocorrelation function is shown in Figure 4.6.

4.6 Jointly Haxmonizable Marginal Sequences

Assuming that the marginal sequences axe jointly stationary places an unaccept-

able constraint on the joint spectral density. This constraint can be relaxed however

by considering a generalization of stationaxity called haxmonizability [15]. A haxmo-

nizable random sequence can be represented by

f
but whereas in the stationary case, Z(A) has orthogonal increments, for haxmonizable

sequences, the increments are not necessarily orthogonal. The autocorrelation is given

by

R(t,u) = E[X'(t)X(u)]

f_" j(f (i)1= e-i_teJ_E[dZ" (A)dZ

////= eJ(_=-_t)dF(A ' X), (4.12)
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Figure 4.5. Plot of F(A1, As) for jointly stationary marginal sequences with Gaussian

marginal spectra.
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Figure 4.6. Plot of R(r,v) for jointly stationary marginal sequences with Gaussian

marginal spectra.
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where F(A, A) is of bounded variation and in general complex valued. In the special

case where X(t) is stationary, (4.12) reduces to (2.6).

Suppose Xl(t) and X2(t) are the marginal sequences of a stationary random

field X(t,u) and they are individually stationary, but jointly harmonizable. Then

the autocorrelations will be one parameter functions of shifts in t, but the cross-

correlations will be two parameter functions. Consider once again, the autocorrelation

of the stationary random field

n(r,v) = E[X'(t,u)X(t + T,U + v)].

Letting u = 0 and t = -r, gives

R(_,.) = E [X'(-_,0)X(0,.)],

= E[X;(-r)X2(O,v)],

= R,_(-_, .).

Similarly, letting t = 0 and u = -v, gives

R(r,v) = E[X'(O,v)X(r,O)],

= E[X;(-v)X,(r)],

= Rn(-_, _).

Note that the cross-correlations are non-stationary, so Rl_(r,v) and R21(r,v) can

NOT be reduced to R_2(v - r) and Rn(v - r) respectively.

Recalling that the autocorrelation of a stationary random field is a Hermitian

function i.e.,

it is easy to show that

R(¢,.) = R'(-_,-.),

R,_(-_,.) = m,2(_,--)

n_,(-_, _) = PG(-,-_).
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Therefore, the cross-spectral distributions are guaranteed to be real valued and non-

decreasing.

4.7 Some Examples

4.7.1 Generalized Brownian Motion

Perhaps the simplest example of a two-dimensional orthogonal increment process

is a variation on the Brownian sheet on (-Tr,_'] × (-Tr, Tr]. Let {Z(11,12), -_" <

11,12 _< lr} be an orthogonal increment process that is Gaussian distributed, with

E[Z(A1,12)] =0,

0.2 [(t1Vat[Z(1,, 12)1= + + _

Then the corresponding distribution function, F(11, 12), is given by

(4.13)

(4.14)

[(_,

F(AI, 12) =

0

+ _)(12 + _) + _(A_ - _)(A] - _)]

2f

2_r

O-2

11 or 12 _< -Tr,

-_r < 1,,12 _< 7r,

--_r< 1, _<_r,12 _> 7r,

A, >_ v, -r < A _<7r,

A, and 12 _> 7r.

The marginal spectral distributions Fl1(1,) and F22(12) are equal to each other

and correspond to a uniform marginal spectral density. In general, the joint spectral

distribution is not strictly uniform in the sense that the joint spectral density is not flat

over (-_r, _r] × (-Tr, _'] unless the parameter x is set to zero. This particular family

of generalized bivariate uniform density functions is called Morgenstern's bivariate

uniform distribution (see Appendix A). It should be noted that other families of

bivariate density functions exist that generate uniform marginal densities [26].

The joint spectral density is given by

dF(A,, A2)

f(A1,12) - dAldA2

-- _2- 0.2 (1-t-_-221112)
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Substituting into (3.19) gives

The two integrals on the right hand side of (4.15) evaluate to

[,_ 2j [sin(rr) - rr COS(T_)].

J-

(4.15)

(4.16)

A plot of this function for continuous r is shown in Figure 4.7 If r is restricted to

F
AeTM dA - 2rj cos(rr)

Ir T

= 2rJ (_1)'_+1"
7"

(4.17)

integers, (4.16) reduces to

A plot of this function is shown in Figure 4.8.

Substituting (4.16) back into (4.15) gives

R(7",v) =o.26(7",v) o.2_ [sin(rr)- rrccos(7"r)J[sin(vrc)-vrcos(vrr)]
4_4T2V 2

O.2I_

= o._6(7",v) [sin(7",_)sin(_) - 7",_cos(7",_)sin(_) --
47147"2U 2

vr sin(7"r) cos(vTr) + rv_ "2 cos(7"r) cos(vrr)].

Restricting 7" and v to integers, reduces this to

O.2K

R(r,.) = o._(_,.) - (-1)_+_ 4_7"_

Evaluating slices in R(r, v) corresponding to r = 0 and v = 0 gives

R,,(_) = R(_,0) = o._(_),

(4.18)
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Figure 4.7. Plot of equation (4.16) for continuous r.

Figure 4.8. Plot of equation (4.17) for discrete r.
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and the cross-correlationis givenby

• • r+v 0.2K

R12(r,v)- R(-r,v)=0.2_(r,v)+(-1) 4-fi_vv"

The two-dimensional autocorrelation for the generalized Brownian sheet is shown in

Figure 4.9 with the exception of the impulse function at the origin. The parameter

is proportional to the correlation coefficient between At and A2. Notice that as

_ 0, the oscillations away from zero lag vanish and the autocorrelation becomes

an impulse at the origin. This is to be expected because for _ - 0 the JSD is fiat

over ×

4.7.2 Bivariate Gaussian

In the generalized Brownian motion example, even though the marginal se-

quences are not jointly stationary, the marginal spectra are identical. Let's consider

a case where the marginal spectra are different from each other. If the joint spectral

density is bivariate Gaussian then the marginal spectra will be univariate Gaussian,

but in general they will have different means and variances. In the following example

the means are set to zero for simplicity, but the variances are unequal.

Let {Z(At, A2),-Tr __ At, A2 __ _r} be an orthogonal increment process that is

Gaussian distributed, with

E[Z(At, A2)] =0,

= ,--,p +Q +Q -L , -,p -1.
0"2 0"2

The corresponding spectral distribution, F(At, A2), is given by

0 At or A2 _< -_r,

( -- ) ( ) (_)-L(" _ p)-I -_'<A1 <Tr, A,F(At,A2)= L _ _ _ +Q _ _,0.2, - -0.,'0.2' p + Q 0., -

( ) (') (_)-L( _ _ p)-I At >_',-Tr<,\"L +Q 7, -Q 0.2 7,,0.2,0,2 7 -- --

1 At and A2 >_ 7r.
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Figure 4.9. Plot of R(T, v) for continuous r and v.
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See Appendix B for the definitions of the Q-function and the L-function. Unlike the

uniform distribution, the bivariate Gaussian distribution is non-zero over all of R 2,

so the tails of the Gaussian will be assumed to be sufficiently small at the boundaries

of (-Tr, 7r] x (-lr,_r] that

), 0-:t, # _ 0,

, ,p ,_0,
0"2

, ,p _0.
O"1 0" 2

Otherwise the truncated bivariate Gaussian distribution should be used [27]. If this

assumption is valid, then F(AI, A2) reduces to

0

1

Ax orA2 _< -v,

-_" _< A1, A2 _< _r,

-_r <_ A1 _< _r, A2 >_ _',

AI>__',-_r<_A<__',

A1 and A2 > _'.

The joint spectral density is given by

1
f(Aa,A2) = _ _exp

zTro'la2V l --p"

1 { A__.12 2pApA2
+ag] , -v<,h,A2<

Substituting into (3.19) gives

R(r, v) = exp [-_(0-, r + 2po',o'2_'v +

The autocorrelations of the marginal sequences are given by

R,,(T) = R(T,0) = _-½_'_"_,

1 _21.2R_(_) = R(0,,) = _-_°_ ,
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and the cross-correlation is given by

See Appendix B for plots of the bivariate Gaussian.

4.8 Simulating Marginal Spectra with Particular JSDs

Marginal sequences with specified joint spectral densities can be simulated using

a variation on a technique proposed by Zrni6 for generating I&Q sequences with

weatherlike spectra. [28]. Writing the complex valued random field in terms of the

inphase and quadrature (I&Q) components,

X(t,u) = I(t,u) + jQ(t,u),

they can be modeled by

I(t,u) = s(t,u)cos_(t,u) + n(t,u)cos_(t,u) (4.19)

Q(t,u) = s(t,u)sincb(t,u) + n(t,u)sinV(t,u) (4.20)

where s(t,u) and n(t,u) are Rayieigh distributed signal and noise envelopes and

(h(t, u) and _b(t, u) are uniformly distributed phases on [0, 2x]. The noise envelope,

n(t, u), is assumed to be broadband compared to s(t, u). Expressing the I&Q fields

in terms of a two dimensional Discrete Fourier Series (DFS) gives

1 M M

I(t,u) + jQ(t,u) = M-----_y_'_ V/-_(k,l) eJ°(k't)e-J_ (k'+''_) (4.21)
k=l /=1

where P(k,l) is the instantaneous power of the signal plus noise and O(k,l) is a

uniformly distributed phase on [0, 2r]. If the shape of the true JSD is given by S(k, l)

and the noise power per discrete frequency is a constant, N, then P(k,/)is given by

P(k,l) = -[5'(k,/) + N] ln U( k, l), (4.22)

where U(k, l) is a uniform random number on [0, 1]. The steps for generating the I&Q

field can be summarized as follows:
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1. Selecta desiredspectral shapeS(k, l).

2. Set the signal-to-noise ratio (SNR).

3. Take the inverse discrete Fourier transform of the product of PV_, l) and an

independent phase ej°(l`'0.

The marginal sequences are easily extracted from the resulting I&Q field by setting

x,(t)= x(t,o),

x_(t)= x(o,t).

In the following two subsections, this simulation technique is used to generate the

marginal sequences for the examples in subsections 4.5.2 and 4.7.2 respectively.

4.8.1 Jointly Stationary with Gaussian Marginal Spectra

In this example, the marginal sequences are jointly stationary with Gaussian

marginal spectra. The ideal shape of the joint spectral density is

I (_, __2

s(_,,_) = _---_ e-_---_-_(_,- _).

Figure 4.10 shows the dB magnitude of the true JSD of the signal plus noise for a SNR

of 100dB. The quadratic shape of the log of the Gaussian can be clearly distinguished

rising out of the noise floor along A1 = A2.

Since the marginal sequences are jointly stationary, the auto-spectra are identical

and equal to

- _--_'_-6(_ - _).

A plotof the auto-spectra of the simulated marginal sequences isshown in Figure 4.iI.

The joint spectral density is formed by setting f(A1, A2) equal to fl_(A) along the

diagonal and zero elsewhere.

If the assumption that the marginal sequences are jointly stationary is dropped,

the non-stationary cross-correlation can be computed by taking the ensemble average
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over N independent realizations of the marginal sequences [29]

1 N . t
/_,2(ta,t_) = _Z Xli(tx)X2'( _)" (4.23)

t

Figure 4.12 shows the estimate of the JSD based on the two dimensional Fourier

transform of the non-stationary cross-correlation where the ensemble average is taken

over N = 1000 realizations. A ridge along )h = X2 is still visible, but it is embedded

in a structure dictated by the shape of the marginal spectra. For a single realization

(N = 1), the non-stationary cross spectral estimate is given by

The structure characteristic of these estimates of the non-stationary cross-correlation

is an artifact of this outer-product of the sample auto-spectra. In the limit as N ----,oc.

f(Ax, )_2) should approach the true JSD, but the convergence does not appear to be

particularly fast.

4.8.2 Jointly Harmonizable with Bivariate Gaussian JSD

The case where the marginal sequences are jointly stationary is not a realistic one

for estimating the JSD from the non-stationary cross-correlation since the JSD can be

found much easier from the auto-spectra. Consider a more practical example where

the marginal sequences are jointly harmonizable with a bivariate Gaussian shaped

JSD. For this example the ideal shape of the joint spectral density is

- _ •

S(Xx,X2) = 2_.tr, o.2_--z-_exp 2(1 p2) a_ a,o', a_]

In the simulations, o'_ = o'2 and p = .95, so that the presence of a correlation in the

joint spectrum would be clearly visible. Figures 4.13 and 4.14 show a 3-D mesh plot

and a contour plot respectively of the dB magnitude of the true JSD of the signal

plus noise for a SNR of 100dB.

Using (4.23) to estimate the JSD, the plot shown in Figure 4.15 was generated.

It is more difficult to see, but the desired gaussian shape is embedded in the central

mound. It can be seen more clearly in the contour plot of Figure 4.16.
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4.9 Summary

In this chapter, marginal sequences are shown to be a class of sequences for which

the JSD can be determined. Two drawbacks are immediately apparent. First, for

the two sequences to be valid marginals, they must start at the same value. It might

be tempting to try to relax this condition by setting the starting values of the two

sequences to zero, or the average of the two starting values, or employing some other

replacement scheme, but that would violate the condition that the two sequences be

individual stationarity. Further research needs to be done applying these sequences

to practical applications. The other drawback is that jointly stationary marginal

sequences necessarily have identical PSDs. The resulting JSD is a degenerate case.

A more general class of marginal sequences can be treated by assuming them to be

jointly harmonizable. Then estimating the JSD involves estimating the non-stationary

cross-correlation which is quite difficult in practice. In the simulations, it was assumed

that an arbitrary number of realizations of the marginal sequences were available for

computing ensemble averages.



CHAPTER 5

AN EXPONENTIAL MODEL

An alternative approachto constrainingthe sequencesis to specify asignal model

that explicitly incorporatesthejoint spectral density in its definition. Considera pair

of random sequences{X(t), Y(t) ) that can be modeled by

K

x(t) = + (5.1)

K

y(t) = + ¢,, (5.2)
i=1

where {a,} and {/3_} are constant complex valued amplitudes, {A,} and {vi} are

random frequencies, {0_} and {¢i} are independent uniform random phases, and _,

and _'_ are zero mean independent white Gaussian noise sequences.

Using this model, a link can be established between the bivariate random se-

quence and a family of random fields for which the spectral representation is equal

to the JSD of {X(t), Y(t)). For this purpose, it is necessary to assume that pairs of

frequencies {A_, v;} are independent and identically distributed according to a bivari-

ate probability density function, p_v(,k, v), that coincides with the normalized joint

spectral density, f_(A, v). Let the characteristic function of px,,(A, v) be denoted by

_(r, v). Marginal functions for £_(A, v), px_(A, v), and (I)x_(r, v) are written in the

usual manner.

A similar model is often encountered in the familiar parameter estimation prob-

lem in which devising "good" estimators for the amplitudes, frequencies, or phases

is of interest [30]. This model is different in one significant respect. The frequency

content in (5.1) and (5.2) is a random variable, and the goal here is not to estimate

the frequency (or amplitude, or phase). Rather, it is shown below that if a pair of
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randomsequencescanbemodeledby (5.1) and (5.2), then it is possible,under certain

conditions, to determine the joint probability density of A and v.

5.1 Correlation and Spectral Properties

The first question to answer is whether X(t) and Y(t) are individually and/or

jointly stationary. The mean of X(t) is given by

E[X(t)] = E a,e "/(x''+°') + _t ,

K

=Z-,z [,_('"')]+zt¢,l,
i=1

K

i=1

=0.

The last step results from the fact that E [e_°'] = 0 for 0_ uniformly distributed on

(-r, rr]. Similarly, it is easy to show that E[Y(t)] = O. The autocorrelation of X(t)

is given by

R=:(t,u) = E[X'(t)X(u)],

K

K K

i=1 i=k

where N¢ is the mean white noise power for _t. Since the phases are independent and

uniformly distributed,

otherwise,

and the autocorrelation reduces to

K

R=(_)= Z I-,I_E[,_"]+_¢,_(_),
i=1

(5.:|,
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wherer = t - s and therefore X(t) is wide-sense stationary. Notice that the expec-

tation on the right-hand side of (5.3) is, by definition, the characteristic function of

A; [4]. Since the {A_} are independent and identically distributed, the characteristic

function can be pulled outside the summation and the autocorrelation becomes

= +

and similarly,

Ryy(r) = BOa(v) + N¢6(r),

where A = g_,=_ la,[ _, B = _g [/3,[2, and ArC is the white noise power of (t.

The cross-correlation of X(t) and Y(t) is given by

R_y(t,u) = E[X'(t)Y(u)],

=E[(i=_a_e-i(_'t+°')+_: ) (k__g/3ke_(_'_+_') + _-) ] ,

K K

(5.4)
i=l k=l

If 0i and Ck are uncorrelated for all i, k then the cross-correlation is zero. If, on the

other hand, 0_ and Ck are allowed to be correlated for i = k, then the cross-correlation

will be scaled by a factor determined by the joint probability density of 0i and ¢_. For

example, if the phases are jointly distributed according to Morgenstern's bivariate

uniform (see Appendix A), then

otherwise.

For our purposes, the constant scale factor can by assumed to be unity without

loss of generality. This assumption corresponds to setting 0i = ¢i.

Substituting back into (5.4) gives

K

R,y(t,u) = _ a_,E [eJC-:_"+'_')] .
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Note that in general,the sequencesare not jointly stationary for Ai # v,. The expec-

tation on the right-hand side can be recognized as the joint characteristic function

of Ai and vi. Since the pairs {Ai, vi} are independent and identically distributed, the

characteristic function can be pulled outside the summation to give

If _,(-t, u) = _,(u - t) then the sequences are jointly stationary.

It is remarkable that the cross-correlation may or may not contain information

about the joint probability structure of I and u depending on a fairly subtle detail of

the signal model. Thus it is difficult to make general statements about a relationship

between the correlation between sequences in the time domain and the correlation

in their frequency content. As in the case of marginal sequences, if X(t) and Y(t)

are jointly stationary, then the joint spectral density is concentrated along A = v. In

order to treat a more general class of problems the non-stationary cross-correlation

must be used.

Taking the discrete time Fourier transform of P_x(r), Ru_(r), and R_y(t, u) gives

the auto-spectra as

fxx(A) = Aft(A) + _-_,

fvu(A) = Bf_(u) + N¢
2_-'

and the cross-spectral density as

=

Considering that the sequences are composed of exponentials with additive white

noise, a question arises of whether spectra are discrete or continuous. Since the fre-

quency content is a random variable, there is no reason to expect that the ,Xi's (or u,'s)

will be harmonically related and thus the sequences will not be periodic. Nevertheless.

they are *'almost" periodic and taken at face value, a single realization of X(t) (or
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Y(t)) would be expected to have a discrete spectrum [1]. However, in the expected

value, the true spectrum is continuous and equal to the probability density function

of the frequency. This is a model for which the sample spectrum can be significantly

different from the true spectrum. For small K, the sample spectrum consists of a

flat noise component with peaks located at the frequencies of the exponentials. Most

likely, this will bear little resemblance to the true spectrum. Therefore, in order for

the sample auto-spectra to look anything like the true spectrum, K must be large.

5.2 Simulations

In the following simulations, the joint spectral density is bivariate Gaussian with

zero mean and equal variances so that

1 12cr2(1 _ p2) ( A2 - 2pAu + v 2 ,

and the marginal spectra are given by

Figure 5.1 shows the power spectral density for K = 256 exponentials, and an SNR

of 50dB. A roughly Gaussian shaped can be distinguished centered at ._ = 3"

In the next two subsections, estimates of the joint spectral density, fx,,(A, v), are

based on estimates of the non-stationary cross-correlation computed as,

1 N

iz.,,(t,u) = x;( t
I

where N is the number of realizations in the ensemble average. Taking the two-

dimensional FFT of/_,_(-t, u) gives f:_,(A, u). The resulting estimates are displayed

as contour plots so that correlations between t and v will be most visible.
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Figure 5.1. Power spectral density of X(t) for K=256.

5.2.1 Single Exponential (K = 1)

The simplest case is when X(t) and Y(t) are the sum of a single exponential and

a white random noise sequence and the amplitudes are set to unity.

The the cross-correlation is given by

[+,o_o,1

If 0 = ¢ then the phases exactly cancel, leaving

R:_,(_, t) = <1,_(-s. t).

Figures 5.2 thru 5.4 show contour plots of ]._v(A. u) for p = 0, 0.5, and 0.9 respectively.

Ensemble averages are over 1,000 realizations in each case. What should be noticed

in these plots is that as p increases, the plot become more prolate along _ = u.
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0

Figure 5.2. Contour plot of ]x,(A, v) (K = 1,p = 0).

Figure 5.3. Contour plot of ]_(A, v) (K = 1, p = .5).
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Figure 5.4. Contour plot of ]_(A, u) (K = 1,p --.9).

5.2.2 Multiple Exponentials (K > 1)

With more than one exponential in the sum, the situation becomes a bit more

complicated. Consider the case of two exponentials.

X(t) = ej(_'t+e') + e jt_t+°,) + 4t,

Y(t) = e j(_'_+_') + e_(_t+_) + 6.

The cross-correlation is given by

,:,<_,_): _ [(:_+<_,,+o,,+___+,++)+_,)(+<:,,+o,,++-,_,++)+¢,)],

E[ej(o,t-x,,)]E[e"_(°'-°,,]+E[e'('2t-_,,)]+otherterms.

The "other terms" include all the product terms with _, and ¢'t. In the expected value,

all the terms of the summation go to zero except E [e j(vl'-_')] and E [eJ(_t-_"].

but when estimating the cross-correlation from a finite number of realizations, these
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"vanishing" terms can contribute a significant error. The more exponentials that are

included in the model (the higher K is) the more of these cross-product terms appear

in the estimate. The upshot is that as K is increased, more realizations are needed

to obtain a reasonable estimate of R,v(s ,t). Figure 5.5 shows the contour plot of

]_(A,u) for K = 2 and p = 0.9 averaged over 1,000 realizations. Notice that in

Figure 5.5 the contours are not as prolate as they were for the single exponential case

shown in Figure 5.4. Many other situations could be considered here, but this is not

intended to be an exhaustive study of the estimation issues associated with the joint

spectral density. The insights to be gained from these simulations are that

1. For this model, it is possible to get the joint spectral density from the non-

stationary cross-correlation.

2. A large number of realizations are needed for meaningful estimates.

5.3 Summary

The exponential model proposed in this chapter, provides an alternative example

of how a bivariate random sequence can be constrained so that its joint spectral

density can be determined. If the phases, 0i and ¢i, are uncorrelated then the cross-

correlation is zero, and can reveal nothing about the joint probability structure of

and u. If the phases are correlated, then the cross-correlation is related to the joint

characteristic function of )_ and u. Except for some special cases, the cross-correlation

is non-stationary. When hi = ui, the joint spectral density is concentrated along the

diagonal just as was the case for jointly stationary marginal sequences in Chapter 4.

In general, simulations showed that the shape of a joint spectral density estimate

based on the cross-cross correlation, averaged over a sufficient number of realizations.

does reflect the degree of correlation between _ and u.
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CHAPTER 6

CONCLUSIONS

6.1 Motivation

The original motivation for pursuing the definition of a joint spectral density was

rooted in a problem from the radar signal processingof weather. In this application,

random sequencesrepresent the backscatter returns from range cells that extend

radially from the radar antenna. The frequency content of each random sequence

is related to windspeed in its corresponding range cell through the Doppler shift

principle. For detecting hazardousweather conditions with a pulsed Doppler radar,

the windspeedgradient is often a quantity of particular interest. When estimating a

windspeedgradient basedhazard index, the ability to also estimate the probability

density of that index would be of considerablevalue. It is in this context that the

need for the joint spectral density arose. If, through the joint spectral density, a

joint probability density of velocity in adjacent range cells can be estimated, then

random variable transformations canbe usedto get a PDF for windspeedgradient or

elementary functions of the windspeedgradient. This method could be implemented

either parametrically or non-parametrically. If prior knowledgeof the form of the

joint PDF of velocity is available, then its parameterscould be estimated from the

joint spectral density. Otherwise, the joint spectral density could be used directly.

The contribution of this dissertation has beento develop the theoretical framework

necessaryto define and apply the joint spectral density.

6.2 Propertiesof the Joint Spectral Density

In Chapter 3, the joint spectral density isdefined in terms of the two-dimensional

spectral density of a stationary random field that hasmarginal spectracorresponding

to the powerspectral densitiesof the two sequences.Thereare two stagesof "many-to-
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one" relationshipsoperating here. At the first stage,many different random sequences

canhavethe samepowerspectraldensity. At the secondstage,oncea two-dimensional

spectral density hasbeenspecified,there are many random fields that canhave that

samepower spectral density function. Therefore it is possible to think of the joint

spectraldensity asforming a bridgebetweenfamiliesof random sequencesand families

of random fields. The spectral theory of multivariate random sequencesand the

spectral theory of random fields are both well established. The importance of the

joint spectral density is that it pulls these two bodies of theory together in such a

way that it is possible to talk about the joint probability density function of the

frequencycontent of multiple sequences.Therefore all of the familiar techniquesfor

interpreting and manipulating probability density functions can be applied to the

analysisof the frequencycontentof multiple random sequences.

The projection-slice theorem providesa relationship betweenslices in the two-

dimensionalautocorrelation of this randomfield, R(r, v), and projections in the joint

spectral density. For spectral density functions with elliptical symmetry such as the

bivariate Gaussian, knowing R(r, 0), R(0, r), and R(r, r) is sufficient to determine the

joint spectral density everywhere. The margins of R(r, v) are recognized to be the

autocorretations of the bivariate random sequence, but further research needs to be

done to determine if there are any conditions under which R(r, r) can be computed

from those sequences.

In the absence of any constraints on the random sequences, the joint spectral

density is underdetermined. In other words, a gap exits between the conventional

functions of bivariate spectral analysis, e.g. the auto- and cross-spectral densities.

and the joint spectral density. In Chapters 4 and 5, two types of sequences are

identified for which the JSD be determined by realizations of a bivariate random

sequence.
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6.3 Marginal Sequences

In Chapter 4 it is shownthat if the bivariate random sequencesare the marginal

sequencesof a stationary random field, then the JSD can be written in terms of the

cross-spectraldensity. When the sequencesare jointly stationary, it is shown that

the autospectraof the two sequencesare necessarilyequal to each other and the JSD

is concentratedalong the diagonaland has the sameshapeasthe autospectra. This

is consideredto be a degeneratecase.By relaxing the condition of joint stationarity

to require only that the sequencesbe jointly harmonizable, a more general classof

sequencescan be treated.

Examplesareprovided of the JSDsfor the jointly stationary and jointly harmo-

nizable cases.A simulation method is presentedfor generating marginal sequences

that correspond to an arbitrary joint spectral density specified by the user. For

a jointly stationary and a jointly harmonizable case, realizations of the simulated

marginal sequenceswere usedto estimate the JSD. Plots of the true and estimated

JSD are included for comparison. It is clear from these plots that the estimated

JSD doesnot closelyresemblethe true JSD. However, the effectsof a correlation be-

tweenthe two frequencyvariablesis visible sothe potential for making parameterized

estimatesof the JSD is promising.

6.4 Exponential Model

In Chapter 5 the sequencesare assumedto be modeled by a sum of complex

exponentialsand additive white Gaussian noise. For a particular sequence, the fre-

quency of each exponential in the sum is an independent realization of a random

variable. The random variables that generate the frequencies in the two sequences

are distributed according to a joint probability density function that corresponds to

the joint spectral density. If the phases are indcpendent and uniformly distributed

on (0, 2zr], the sequences are shown to be individually stationary and with autocor-

relations proportional to the marginal characteristic function of the frequency. The



cross-correlationis found to be zero if the phasesin one sequenceare uncorrelated

with the phasesin the other sequence.If the phasesare correlated, then the cross-

correlation is proportional to a reflection of the joint characteristic function of the

frequencies.

Simulations are presented for the joint spectral density distributed as a bivariate

Gaussian. For the case of a single exponential, simulations were run for p = 0, 0.5,

and 0.9 and contour plots of the estimated joint spectral density reflect the degree

of correlation between the frequency content of the two sequences. As the number

of exponentials is increased, it was found that more realizations need to be ensemble

averaged to mitigate the effects of cross-product terms in the cross-correlation. These

cross-product terms go to zero in the expected value, but when the expected value

is estimated by averaging over a finite number of realizations they can introduce a

significant error.

6.5 Future Work

For the marginal sequences and the exponential model, the joint spectral den-

sity is equal to the non-stationary cross-spectral density reflected about one of the

frequency variables. As such, estimation of the cross-correlation is a primary con-

cern. The fact that the cross-correlation is in general non-stationary complicates the

estimation problem considerably. Since ergodicity does not hold, time averages can

not be substituted for ensemble averages. This means that, except in certain special

cases, multiple realizations are needed to get meaningful estimates. A potential rem-

edy to this estimation problem is the concept of local stationarity which offers the

possibility of estimating the non-stationary cross-correlation from a single realization

[29, 31]. The cross-correlation is called locally stationary if it can be factored into a

stationary part and a non-stationary part by introducing the substitution

T T

tl=t 2' t2=t+2,
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into Rxy(tl, t2). Then the cross-correlation can be written as

where C is a constant, rl(t) is the instantaneous power, and r (r) is a stationary

sequence. If Fl(t) is slowly varying with respect to l-'2(r) then they can be estimated

separately [29]. This and other implementation issues should be a fruitful area for

future research.

6.6 Final Assessments

In this dissertation a theoretical framework has been developed for considering

the joint spectral density of bivariate random sequences. A significant contribution

has been made by defining and exploring the properties of the joint spectral density

in terms of a link between the spectral representation of bivariate random sequences

and the spectral representation of stationary random fields. Since the joint spectral

density was found, in general, to be underdetermined with respect to the two se-

quences, there is a need to devise constraints on the sequences that allow the JSD

to be determined. Two such constraints are investigated here, but further research is

called for to identify other classes of signals that yield unique JSDs.
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Appendix A

Familiesof Bivariate Uniform Distributions

There is more than one solution to the problem of determining a bivariate den-

sity function that yields uniform marginal densities. Two one-parameter families of

bivariate distributions that satisfy the consistency requirement for the marginals are

the Morgenstern's uniform distribution and Plackett's uniform distribution [26].

A.1 Morgenstern's Uniform Distribution

Morgenstern proposed a family of distribution functions given by

H(x,y)=F(x)G(y){l+a[1-F(x)][1-G(y)]}, -1 <a<_l. (A.1)

The corresponding density function is given by

h(x,y) = f(x)g(y){1 + a[2F(x)- 1][2G(y) - 1]}, -1 < a _< 1. (A.2)

If F(x) and G(y) are uniform distributions on [0,1], then Morgenstern's uniform

distribution is given by

h(x,y) = [l + _:(2z-1)(2y-1)], -1<__;<_1. (A.3)

Figures A-1 thru A-5 show h(x, y) for various values of _¢.

A.2 Plackett's Uniform Distribution

The density function for Plackett's bivariate uniform distribution is given by

el(V;- 1)(x + y- 2xy) + 1] 3 ¢ > o. (A_,
h(x,y) = {[1 + (_b- 1)(x + y)]2 - 4_(_b - 1)xy}_' -

Figures A-6 thru A-10 show h(x, y) for various values of ¢.
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Figure A-1. Morgenstern's uniform density for _ = 0.
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Figure A-2. Morgenstern's uniform density for x = 0.5.
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Figure A-3. Morgenstern's uniform density for K = 1.
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Figure A-4. Morgenstern's uniform density for K = -0.5.
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Figure A-5. Morgenstern's uniform density for i¢ = -1.
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Figure A-6. Plackett's uniform density for ¢ = 0.
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Figure A-7. Plackett's uniform density for ¢ = 0.5.
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Figure A-8. Plackett's uniform density for ¢ = 0.2.
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Figure A-9. Plackett's uniform density for ¢ = 2.
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Figure A-10. Plackett's uniform density for ¢ = 5.
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Appendix B

Some Properties of the Gaussian Distribution

B.1 Univariate Gaussian

A standard univariate Gaussian is given by

G(x) = _e--v-, (B.1)

and the distribution function is given by

Fx(x) = P(X < x)- 1 /_
_ _ J-_ e-i"dt, (B.2)

where the integral on the right hand side can not be evaluated in closed form. Instead

it is often tabulated in terms of the area under the tail of the Gaussian, the so called

Q function [32]

Q(x)= eTdt, (B.3)

or in terms of the error function

2 fo _ _,2err(x) = _ e--_- dt. (B.4)

The relationships among F(x), Q(x), and err(x) for a standard zero mean, unit vari-

ance Gaussian function are as follows:

F(x) + Q(x) --1, F(x) = Q(-x), erf(x) = 2F(v/2x) - l.

For a Gaussian random variable y with mean # and variance cr2, the distribution

function, F(y), can be found from the Q and err functions replacing x with _-..._e._This

gives

( 11( (F(y)-Q =_ I +err _/_j .



B.2 Bivariate Gaussian

A standard bivariate Gaussianis given by

g(x,y,p)- ,

and can be written in terms of Z as

!)i

2(1-p2) (x2 - 2pxy + y2
(B.6)

(B.7)

Figures B-1 thru B-3 show plots of the bivariate Gaussian for p = 0, p < 0, and

p > 0 respectively. As in the univariate case, the integral of the bivariate Gaussian is

tabulated in terms of the area under the tail called the L function [32]

Z(w) dw (B.8)

where

(B.9)

(B.10)

(B.11)

(B.12)

Some useful relationships among F, L, and Q are

F(h,k;p) = F(k,h;p)= L(-h,-k,p)= L(-k,-h,p)

= L(h,k,p) + Q(h) + Q(k) - 1

F(-h,k,p) = 1 -Q(h)- L(h,k,-p)

F(h,-k,p) = 1-Q(k)- L(h,k,-p).

B.3 Symmetry Properties of the Bivariate Gaussian

If a bivariate time series has a Gaussian shaped joint power spectral density, then

the characteristic function is of the form

• (rl, r2) = e -½(_2_+2Das_''_+b_) (B. 13)

which has elliptical symmetry resulting from the

a2x 2 + 2rabxy + b2y 2 (B.14)
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Figure B-1. 2-dimensional Gaussian with p = 0
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Figure B-2. 2-dimensional Gaussian with p > 0
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Figure B-3. 2-dimensionalGaussianwith p < 0
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form of the argument of the exponential. If r = 0 then (B.14) reduces to

x 2 y_
-- C 2

b2 +_ (B.15)

which describes a family of ellipses for which the major and minor axes coincide with

the coordinate axes (see Figure B-4). A non-zero value for r corresponds to a rotation

of axes by an angle of a, where a is given by

a 2 -- b 2

cot_- 2rab ' (B.16)

as shown in Figure B-5.

\

P

/

X

Figure B-4. Family of ellipses for r = 0.
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